

Sem- ET&T 6th Subject- <u>VLSI Design</u>

Time Allowed: 2 hrs Max Marks: 40

NOTE : (1) Attempt any Five Questions. (2) Attempt question in serial order.

SSIPMT RAIPUR

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain Photolithography. Include detailed diagram and description.	[8]	Understanding	1
2.	Write a program for FSM detecting consecutive three 1's and three 0's	[8]	Apply	1
3.	Write a program for universal register.	[8]	Apply	1
4.	Write a program for up/down counter	[8]	Apply	1
5.	Draw Layout diagram of NOT gate NAND gate	[8]	Apply	2
6.	Describe Layout Design rules	[8]	Understanding	2

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering

Class Test - II Session- Jan. - June, 2022 Month- June

Sem- ET&T 6th Subject- Digital Signal Processing - C028613(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

SSIPMT RAIPUR

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Determine the direct Forms I and II realizations for a third-order HR transfer function. $H(z) = \frac{028z^2 + 0.319z + 0.04}{0.5z^3 + 0.3z^2 + 0.17z - 0.2}$	[8]	Apply	CO2
2.	An LTI system is described by the equation $y(n) - \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = x(n) = +3x(n-1) + 2x(n-2)$. Determine the cascade realization structure of the system.	[8]	Apply	CO2
3.	Realization the given system in and parallel forms. $H(z) = \frac{1\frac{1}{2}z^{-1}}{\left(1 - z^{-1} + \frac{1}{4}z^{-2}\right)\left(1 - z^{-1} + \frac{1}{2}z^{-2}\right)}$	[8]	Apply	CO2
4.	The desired response of a low-pass filter is $H_{d}(e^{j\omega}) = \begin{cases} e^{-j\omega}, -3x/4 \le \omega \le 3x/4 \\ 0, 3x/4 < \omega \le x \end{cases}$ Determine $H(e^{j\omega})$ for $M = 7$ using a Hamming window.	[8]	Apply	CO3
5.	A law=pass filter is to be desingned with the following desired frequency response $H_d(e^{j\omega}) = \begin{cases} e^{-j2\omega}, -\pi/4 \le \omega \le \pi/4\\ 0, & \pi/4 < \omega \le \pi \end{cases}$ Determine the filter coefficients h _d (n) if the window function is defind as $w(n) = \begin{cases} 1, & 0 \le n \le 4\\ 0, & \text{otherwise} \end{cases}$ Also, determine the frequency response $H_d(e^{j\omega})$ of the designed filter	[8]	Analysis	CO3
6.	A low=pass filter gas the desired response as given below $H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & 0 \le \omega < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} \le \omega \le \pi \end{cases}$ Determine the filter coefficients h(n) for M=7, using type-Ifrequency sampling	[8]	Analysis	CO3

technique.

Shri Shankaracharya Institute of Professional Management & Technology <u>Department of Electronics and Telecommunication</u> Class Test – II Session- Jan.– June 2022 Month- June

Sem- ET 6th Subject- Information Theory and Coding C028631(028)

Time Allowed: 2 hrs Max Marks: 40

lote: - Attempt any 5 question. All questions carry equal marks.

SIPMT

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs	
1.	The Parity Check matrix of (7,4) linear code is as follows: $H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0$	[8]	Understand	.CO3	
<u>د</u> .	Calculate the syndrome vector for single bit errors. The generator matrix for (6,3) block codes is given below. Find all code vectors of this code. $G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$	[8]	Apply	CO3	
3.	For a (6,3) linear block code the coefficient matrix [p] is as follows: $P = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ The received code words at the receiver are i) 0001110 ii) 111011 Check whether they are correct or contain errors.	[8]	Understand	CO3	
4.	For a systematic linear block code, the three parity check digits . C_4 , C_5 , C_6 are given by $C_4 = d_1 + d_2 + d_3$ $C_5 = d_1 + d_2$ $C_6 = d_1 + d_3$ i) Construct generator matrix ii) Construct code generated by this matrix iii) Determine error correcting capability iv) Prepare suitable decoding table	[8]	Apply	CO3	
5.	For a (7,4) cyclic code, find out the generator matrix if $G(D)=1+D+D3$	[8]	Apply	CO4	
6.	Dwetermine the generator polynomial of a single error correcting BCH code with the block length $n=15$.	[8]	Apply	CO4	

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics & Telecommunication Class Test – II Session- Jan june 2022 Month- June

Sem- ET&T 6th Subject- Antennas & Wave Propagation Code- C028612(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Write a short note on Tropospheric scatter & Duct Propagation	[8]	Understanding	CO2
2.	Explain Antenna Top Loadind & Tuning Effect	[8]	Understanding	C05
3.	Derive an expression of Field Strength of a Tropospheric wave	[8]	Apply	CO2
4.	Explain Ground wave, Sky wave & Space wave Communication.	[8]	Understanding	CO2
5.	Explain: (1) Beverage Anteena (2) V Antenna	[8]	Understanding	CO

"Teachers can open the door, but you must enter it yourself."

SSIPMT

SSIPMT

Shri Shankaracharya Institute of Professional Management & TechnologyDepartment of Electronics & TelecommunicationClass Test – IISession- Jan June 2022Month- JuneSem- ET&T 6thSubject- Antennas & Wave PropagationCode- C028612(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Write a short note on Tropospehric scatter & Duct Propagation	< [8]	Understanding	C01
2.	Explain Antenna Top Loadind & Tuning Effect	[8]	Understanding	C05
3.	Derive an expression of Field Strength of a Tropospheric wave	[8]	Apply	C02
4.	Explain Ground wave, Sky wave & Space wave Communication.	[8]	Understanding	C02
5.	Explain: (1) Beverage Anteena (2) V Antenna	[8]	Understanding	C05

"Teachers can open the door, but you must enter it yourself."

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test - II Session- Jan - June, 2022 Month- June Sem- ET&T 6th Subject – AI and Machine Learning - C000630(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any four questions. All questions carry equal marks.

SSIPMT

RAIPUR

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
I.	Explain goal based agent and utility based agent with diagram.	[10]	Understanding	CO1
2.	Explain hill climbing method and write its features. Also explain local maximum, global maximum, plateau and ridges.	[10]	Understanding	CO1
3.	Explain alpha beta pruning and knowledge based agent in artificial intelligence.	[10]	Understanding	CO2
4.	Explain wompus world in artificial intelligence and also explain breeze, pit and stench with respect to wompus world.	[10]	Understanding	CO2
5.	What is knowledge representation in AI. Explain different types of knowledge in AI.	[10]	Understanding	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test - II Session- Jan - June, 2022 Month- June Sem- ET&T 6th Subject – AI and Machine Learning - C000630(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any four questions. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
I.	Explain goal based agent and utility based agent with diagram.	[10]	Understanding	CO1
2.	Explain hill climbing method and write its features. Also explain local maximum, global maximum, plateau and ridges.	[10]	Understanding	CO1
3.	Explain alpha beta pruning and knowledge based agent in artificial intelligence.	[10]	Understanding	CO2
4.	Explain wompus world in artificial intelligence and also explain breeze, pit and stench with respect to wompus world.	[10]	Understanding	CO2
5.	What is knowledge representation in AI. Explain different types of knowledge in AI.	[10]	Understanding	CO3